Primary Variables Variable Switching Initial Conditions Boundary Conditions

Stefan Finsterle

Earth Sciences Division
Lawrence Berkeley National Laboratory

Berkeley, California

1

General Concept

- Primary variables completely define the system state
- Choice of primary variables defines the phase state (single-phase vs. two-phase conditions)
- Initial conditions are the set of primary variables at the beginning of a simulation
- Dirichlet boundary conditions are given as initial conditions for inactive elements (or elements with a very large volume)
- The system state at the end of a simulation (stored on file SAVE) can be used as the initial conditions (file INCON) for a subsequent simulation

Primary Variables – Secondary Parameters

- Assuming local thermodynamic equilibrium, the system state is defined by the number of balance equations per grid block, typically NK mass balance equations and one energy balance equation
- The primary variables are the time-dependent unknowns of the simulation, i.e., they are the solution variables
- The number of primary variables depends on EOS module (e.g., EOS9: 1; EOS3: 3; T2VOC: 4)
- Secondary parameters are fluid and state-related properties calculated as a function of the system state, i.e., sec. par. = f(prim. variables)

3

Variable Switching

- Each element may be in a different phase state,
 i.e., may have a different set of primary variables
- Phase state may change during simulation (phase appearance/disappearance) > variable switching
- Primary variables are identified by their position and value (sometimes enhanced by a constant value, typically 10)
- First primary variable is (gas) pressure;
 Exception: EOS9 unsaturated
- Last primary variable is always temperature (even if isothermal conditions are chosen)

Exception: EOS2, EOS4, EOS9

Single-Phase vs. Two-Phase Conditions for EOS3 (1 of 3)

- (Second) primary variable for single-phase conditions is air-mass fraction in phase β , X_{β}^{air}
- (Second) primary variable for *two-phase* conditions is saturation $S_e + 10$
- 10 is added to S_g to distinguish between singleand two-phase conditions based on the numerical value alone:

$$0 \le X_{\beta}^{a} \le 1$$
 and $0 + 10 < S_{g} + 10 < 1 + 10$

- What is β in X_{β}^{air} , I (liquid) or g (gas)?
- How can we distinguish between single-phase liquid and single-phase gas?

Ę

Single-Phase vs. Two-Phase Conditions (2 of 3)

- Single-phase liquid: $0 \le X_{\beta}^{a} = X_{l}^{air} < X_{l,eq}^{air}$
 - Value of X_{β}^{air} typically close to zero
 - Represents amount of air dissolved in liquid phase
 - Solubility limit $X_{l,eq}^{air}$ given by Henry's law
 - Typical value (P = 1 bar, T = 20°C): $X_{l,eq}^{air} \approx 1.6 \times 10^{-5}$
- Single-phase gas: $X_{g,eq}^{air} < X_{\beta}^{a} = X_{g}^{air} \le 1$
 - Value of X_{β}^{air} typically close to one
 - Represents amount of air present in gas phase
 - $X_{g,eq}^{air} = 1 X_{g,eq}^{w}$ given by vapor pressure curve
 - Typical value (P = 1 bar, T = 20°C): $X_{g,eq}^{air} \approx 0.985$
- Two-phase: $X_l^{air} = X_{l,eq}^{air}$ and $X_g^{air} = X_{g,eq}^{air}$
 - X_{β}^{air} at equilibrium values determined by P and T
 - X_{β}^{rair} no longer a prim. variable \rightarrow initialize as S_{g} +10

Single-Phase vs. Two-Phase Conditions (3 of 3)

Mass fraction:
$$X_{\beta}^{\kappa} = \frac{m_{\beta}^{\kappa}}{m_{\beta}} = \frac{m_{\beta}^{\kappa}}{\sum_{\kappa=1}^{NK} m_{\beta}^{\kappa}} = \frac{x_{\beta}^{\kappa} M^{\kappa}}{\sum_{\kappa=1}^{NK} x_{\beta}^{\kappa} M^{\kappa}}$$
 $\sum_{\kappa=1}^{NK} X_{\beta}^{\kappa} = 1$ $M^{\kappa} = m^{\kappa}/n$

$$\sum_{\kappa=1}^{NK} X_{\beta}^{\kappa} = 1 \qquad M^{\kappa} = m^{\kappa} / n$$

$$X_g^a(T = 20^{\circ}C) \approx 0.985$$

$$X_g^w(T = 20^{\circ}C) \approx 0.015$$

$$P_{tot} = P_g^a + P_{sat}^w$$

$$X_t^a(T = 20^{\circ}C) = 1.6 \cdot 10^{-5}$$

Single-phase liquid P_g, X_l^a, T

Two-phase gas-liquid
$$P_g$$
, $10+S_g$, T

Single-phase gas
$$P_g, X_g^a, T$$

Variable Switching singlesingletwophase phase phase liquid gas X_l^{air} $S_g + 10$ X_g^{air} 11 10 X_2 1 $X_{l,eq}^{air}$ 0 S_{g}

Specifying Initial Conditions

- Provide default initial conditions in block PARAM. 4:
 - Apply to all elements
- Provide domain-specific initial conditions in block INDOM
 - Provide domain name from ROCKS and primary variables
 - Overwrites default values given through PARAM. 4
- Provide element-specific initial conditions in block INCON
 - Provide element name and primary variables
 - Overwrites default and domain specific primary variables
- Provide keyword START if INCON does not provide initial conditions for all elements in same order as block ELEME
- File SAVE contains INCON block to be used for follow-up run
- Block INCON may be provided on external file INCON

.

Dirichlet Boundary Conditions

- Constant pressure/saturation/temperature boundary conditions are specified as initial conditions
- To keep them constant, do one of the following:
 - Set the corresponding boundary element volume to a very large value (typically 1.0E50). The very large volume ensures that the system state in this element remains constant despite inflow/outflow of fluids and energy
 - Make boundary elements inactive by moving them to the end of block ELEME, after an element of zero or negative volume
- Specify constant temperature boundary conditions (but variable pressure/saturation) by setting rock grain density to a very large value (typically 1.0E50)

Neumann Boundary Conditions

- Specified flow (Neumann) boundary conditions are specified through block GENER
- Neumann boundary conditions can be constant or time-dependent (tabular input)
- · Injection is positive, production is negative
- For injection, specify mass flow rate of component κ (not phase β) and enthalpy
- For production, specify total mass of produced fluid mixture
- Phase composition for production is determined by phase composition and mobility of producing element (see also MOP (9))

Atmospheric Boundary (1 of 5)

- No atmospheric boundary element needed for Richards equation (EOS9)
- Specify Dirichlet boundary condition at land surface (i.e., inactive element or element with large volume; special rock type, e.g., ATMOS)
- A single atmospheric element can be connected to all elements at the ground surface (use, e.g., <u>AddBound.exe</u>)
- Use small nodal distance (e.g., boundary layer thickness) from atmospheric element to interface with first row of soil elements

Atmospheric Boundary (2 of 5)

- Initial condition in atmospheric element:
 - Atmospheric pressure and temperature
 - For 100% relative humidity, use two-phase point with liquid saturation smaller than residual liquid saturation (so relative permeability is zero, preventing liquid flow into soil)
 - For less than 100% relative humidity, use single-phase gas point with appropriate air mass fraction X_g^a (X_g^a =1.0 for dry air; minimum value $X_{g,min}^a$ =1- $X_{g,eq}^w$ depends on vapor pressure (which is a function of temperature); intermediate values $X_{g,min}^a$ (T) < X_g^a ≤ 1.0 determine relative humidity)

13

Atmospheric Boundary (3 of 5)

- Material Properties for Atmosphere
 - Select relative permeability and capillary pressure functions so that (for the saturation given in the atmospheric boundary element):
 - · Liquid relative permeability is zero at specified saturation
 - Gas relative permeability is one at specified saturation
 - · Capillary pressure is zero at specified saturation
 - Ensure upstream weighting of mobilities (see MOP (11))
- Infiltration
 - Specify infiltration rates in row of elements below the atmospheric boundary element using the GENER block
- Evaporation
 - Simulate as binary diffusion process (atmosphere at <100% r.h.)
 - Specify ET rate in row of elements below the atmospheric boundary element using the GENER block
 - Assign capillary pressure according to Kelvin's equation in atmospheric element (see Ghezzehei et al., Vadose Zone J., 3: 806–818, 2004)

